Enabling Uniform Push Services for WAP and WWW

Yen-Cheng Chen
Department of Computer Science
Ming Chuan University
Taoyuan, Taiwan 333, Republic of China
yencheng@mcu.edu.tw

Abstract

A uniform push framework for both WAP and WWW
is proposed in this paper. In WAP 1.2, a major
enhancement over WAP 1.1 is the support of push
services. That is, an original server providing
contents can asynchronously send information to a
WAP client without any explicit request from the WAP
client. In the Internet WWW environment, there are
also demands for web push services. Instead of
developing a new suite of protocols for web push, we
propose the use of the WAP Push Access Protocol
(PAP) in web push services. This approach enables
uniform push services for WAP and WWW. Our
approach requires each web client to support PAP
and push user agent functionality. A system
architecture for a web client is thus proposed. The
implementation of a web client on PCs is also
discussed.

1. Introduction

Wireless Application Protocol (WAP) [1], developed
by WAP Forum [2], is to define a suite of
industry-wide specifications for enabling applications
over wireless communication networks. The one of
initial goals of WAP 1is to introduce the web
browsing-like capabilities into mobile devices [3,4].
Regarding this issue, two major limitations were
carefully considered. One is the limitation of mobile
devices in their small display, little memory space,
and less computing capability. The other is the
unreliable communication and low transmission
support in current wireless network infrastructure. To
reduce the possible implementation complexity, a
WAP protocol gateway is introduced between the
mobile devices and the original servers providing
WML/WMLScript pages [5]. A WAP gateway
receives a request from WAP clients, retrieves the
desired WML pages stored in Internet web servers
via HTTP, encodes the WAP contents, and finally
sends the encoded binary results to the WAP clients.
Since WAP gateway divides the complicated
communication procedures into wireless and wired
parts, WAP content providers in wired Internet can
easily provide WML pages just like HTML ones. No
additional hardware or software is required but the
HTTP server. Indeed, there have been a lot of web
servers providing both HTML and WML pages in the
Internet.

In 1999, WAP Version 1.2 was proposed. The
major enhancement over WAP 1.1 is the support of
“push” services [6]. As known in a client/server
model, a client can request a service or information
from a server. The server then responds in
transmitting information to the client. This is known
as “pull” technology. In contrast, we may wish that
the server also could send information to the client
without any explicit request from the client. This
capability comes from the “push” technology. In
brief, a “pull” transaction of information delivery is
initiated by the client, while a “push” transaction is
initiated by the server. WAP Push service is proposed
to make the servers to the push content to mobile
devices in a standard manner within the WAP
domain. Obviously, if we would like to get
information as soon as it is available, letting the
information be automatically pushed to us is an
efficient way. Stock quote updates, important or
urgent news, traffic reports, or event notifications
may be typical examples demanding push services.
WAP 1.2 will be the very first standard approach
enabling push services in wireless network
environments. We can foresee that a lot of WAP
servers will turn into WAP push servers. As a result,
we can get information efficiently from a mobile
device without performing any manual operation but
just keeping the mobile phone powered on.

Compared with the WAP Push services in
wireless networks, current WWW services in the
wired Internet are typical pull applications. We
believe that there is demands for web push services in
Internet. In fact, there have been a number of
so-called “push” web applications such as Pointcast,
Infogate [7], Netscape’s Netcaster, and Microsoft I.E.
Channels. However, the above applications are not
really push applications. Quietly in the background,
their client-side programs retrieve information from
severs according to a predefined schedule. Users get
the up-to-date contents as if they are pushed
automatically by the servers. In [8], such kind of
pushes is called “Smart Pull”. The frequent
information retrievals by smart pulls may consume
considerable network bandwidth. In the recent years,
a few true push approaches are proposed for efficient
web information delivery [9-11]. The common
features among them are channel-based information
delivery and the use of multicast protocols. These
features may limit the types of the delivered

information and the network environments. By WAP
Push specifications [6], on the other hand, the push
initiators can be from anywhere in the Internet and
the information are delivered wvia unicast
communications in the wired Internet side.
Furthermore, the pushed information can be per-user
based. All these features can lead to a more general
push communication infrastructure. Encouraged by
the WAP forum’s effort in promoting public push
services for general purposes, we think that if there is
a similar open approach for web push services in the
Internet, the WWW information will be delivered
more efficiently. Consequently, like WAP push
service, people can use desktop PCs to get web
information easily without taking long time in
opening a WWW browser, typing URLs, and surfing
among tons of hyperlinks.

In this paper, we will propose an open approach
enabling Internet web push services. Our idea is the
use and adaptation of WAP push protocols in wired
Internet. Although WAP Push protocols are designed
for WAP wireless environment, we found that the
wired Internet environment can be regarded as a
particular and simplified configuration with respect
to the WAP Push architecture. Hence, WAP Push
protocols could be a possible candidate enabling web
push services. We will adopt the WAP Push Access
Protocol (PAP) [12] as the push transfer protocol
between web clients and web push servers.
Accordingly, both web clients and servers should
support PAP to provide push services. Since PAP is a
lightweight protocol over HTTP and most messages
carried in PAP is of XML format [13], we will
demonstrate that only modest overhead is introduced
over HTTP and the PAP messages can be efficiently
parsed by XML tools. Another reason why we choose
the same push protocol as WAP push services is in
order to make a WAP push server capable of pushing
contents to the Internet. That is, under our approach,
a WAP push server itself can also be a web push
server except for the different content formats. On the
other hand, a web push server can push information
into wireless devices. Our uniform approach also
facilitates integrated and intelligent push services, in
which a push server can possibly determine an
appropriate push method to deliver information to the
client according to the predefined schedule or client
location information.

The remainder of this paper is organized as
follows. Section 2 is an overview of the WAP Push
framework. In Section 3, we will propose a uniform
push framework for both WAP and WWW. The use
of WAP Push Access Protocol in web push services
will be presented. Then, a possible architecture for a
web client will be proposed in Section 4. A web
client implementation for desktop PCs will also be
discussed. Finally, conclusions and future work are
given in Section 5.

2. WAP Push Framework

@ WAP Client

)

Internet w)

Push Initiator

Push Proxy Gateway
Figure 1. WAP Push Framework

Figure 1 illustrates the WAP Push framework [6].
The procedure of a push operation is usually started
from the push server that wishes for delivering
information to mobile clients. The push server,
located in the Internet, is called Push Initiator (PI) in
the WAP context. The push communication is not
directly performed by PI and the mobile client.
Similar to the WAP gateway in WAP 1.1, a WAP
Push Proxy Gateway (PPG) [14] is introduced
between the mobile clients in WAP domain and Push
Initiators in the Internet. When a Push Initiator would
like to send a push message to one or more WAP
clients, it first transmits the push message together
with control information to the Push Proxy Gateway
(PPG) via Push Access Protocol (PAP), which is an
application protocol on top of HTTP. When PPG
receives a push request from a Push Initiator, it will
retrieve the control information sent with the push
content to determine the addresses of WAP clients to
be pushed and the specified QoS requirements for the
push communication over the air. The push content is
then transmitted via the Push Over-The-Air (OTA)
Protocol [15] from PPG to WAP clients in the
wireless domain. Since it is possible that push
message was not successfully delivered to the WAP
clients for some reasons, or the push message is
rejected or pended by WAP clients, the PPG may
notify the Push Initiator about the result of the push
operation. PPG may also provide the Push Initiator
with client capability query services. The client
capabilities query helps a Push Initiator to select the
most appropriate format of the push content for the
particular WAP client. The WAP client, the terminal
side of the WAP Push framework, is also
recommended to have two additional components:
Session Initiation Application (SIA) and Application
Dispatcher. The SIA establishes an active WSP [16]
session between the WAP client and the PPG. The
activated session is to enable connection-oriented
push. Application Dispatcher is responsible for
forwarding the received push messages to the
appropriate upper applications.

3. A Uniform Push Framework

It can be seen that several concepts of WAP were
derived from the Internet WWW services. In WAP

1.1, the Internet side of the WAP architecture is
almost the same as WWW except for the markup
languages. The advantage of the much similarity
between WAP and WWW is the reuse of web
technology in delivering WAP services. At the
present, in WAP 1.2, WAP Push services have been
well defined. However, there is still no open
approach that makes possible the Internet web push
services. Nevertheless, the much resemblance in the
Internet side of these two services tells us that it is
possible to adopt WAP Push technology in web push
services. Our first idea is the use of PAP in the
delivery of web push messages.

As shown in Figure 1, WAP Push services use
PAP in the Internet side. PAP defines five operations
between PI and PPG. PI can initiate the following
operations to PPG:

a. Push Submission

b. Push Cancellation

c. Push Status Query

d. Client Capabilities Query

In the opposite direction, PPG is able to initiate
the Result Notification operation to PI. A push
message is sent primarily by means of the push
submission operation. Push status query is to let PI
understand the current status of a message submitted
previously. Additionally, push cancellation allows PI
to cancel a previous push submission. The client
capabilities query operation helps PI to prepare the
push content in an appropriate format suitable for the
display of the push content in a wireless device. Via
result notification, the PPG informs PI the final result
of a previous push submission. We can find there is
much effort taken in PAP to handle the potential
communication issues caused by the latter
transimisson of push messages over the air.

Now, let us start to consider the use of PAP in
the web push services on Internet. To be consistent
with WAP push, we also call the web push server
Push Initiator. A web client is a node in the Internet
which is able to receive push messages from Pls.
Since both web clients and Pls reside in the Internet,
it is not necessary to introduce any gateway between
them. Recall that PAP is designed for communication
between PIs and PPGs. Under the firist glance, it
seems to be problematical to adopt PAP between the
web clients and Pls. In the following, let us consider
an extreme case in the WAP environment to show the
possibility of using PAP in web push services. For
simplicity, we discard the wireless portion of the
WAP Push architecture. Assume there is WAP Push
message subscribed earlier by a client. From the
standpoint of PI, the client is conceptually an address
field in the push message since the actual wireless
communication is performed by PPG. Hence, PI just
fills in the necessary fields in the push message, and
then sends it to the PPG via PAP. Let us assume the
PPG itself is the client to receive the push message.

WAP Client

WAP

domainwj

Push OTA " B
Protocol

Ll ’ & (Uniform) Push Initiator
Push Proxy Gateway

Figure 2. A Uniform Push Framework

Therefore, the client address field in the push
message is the IP address of PPG. As a consequence,
the client receives a push message directly from the
PI, and the WAP Push transaction is done. In fact,
this particular WAP Push transaction is a web push
because the client is on the Internet and no wireless
communication occurs. At this extreme case, only
PAP is used for push message transfer. Therefore, if a
web client can behave like the Internet side of a PPG
when facing a PI, PAP can be used in web push
sevices. The adoption of PAP in web push services
can also lead to a uniform push framework. In the
uniform push framework, each WAP PI itself is a
Web PI without any modification in protocol level.
No difference exists between WAP Pls and Web PlIs.
Accordingly, there will be only one kind of PIs in the
Internet, and any client wherever it resides can
receive push messages in a standard fashion. Figure 2
is exhibition of the uniform push framework. In the
uniform push framework, the WAP clients and PPG
as well as the protocols in the WAP domain are kept
unchanged. In the following, the functionality of PI
and Web Client is described in details.

A. Uniform Push Initiator (PI)

Within the uniform push framework, the
uniform PI should fully conform to WAP 1.2. This is
to achieve the seamless integration of WAP and Web
Push services. In the protocol level, we recommend
that the uniform PI behave in the same way wherever
the client is located. That is, a uniform PI may issue
any operation defined in PAP even if some of the
operations are not necessary for web pushes. In
addition, as in WAP Push, a uniform PI can also send
Service Indication (SI) [17] and Service Loading (SL)
[18] messages to a web client in the Internet. A web
client may utilize these features to facilitate upper
applications. The requirement of identical behavior in
the protocol level allows the existing WAP Pls to
push messages to web clients without any
modification.

Beyond the protocol conformance, there still
exist difference in PI implementation. For example, a
WAP PI usually uses one or a mall number of PPGs
for WAP Push services. In web push services,
however, PIs should directly push information to

each web client. Therefore, a uniform PI should
communicate with each web client as if there is a
unique PPG for the web client. Accordingly,
additional maintenance of PPG information will be
required for a uniform PI. In addition, PAP allows a
WAP PI to push an identical message to multiple
WAP clients in one push operation. This feature
cannot be supported if the recipients are web clients.
Thus, the uniform PI should initiate a push operation
for each web client. One possible solution is the use
of multicast addresses, which are not implemented
usually. Another potential issue is the availabilities of
web clients. In WAP Push, push messages can be
buffered in PPG if the WAP client is not available.
Because the PPG is supposed to be always ready to
receive push requests, a WAP PI will not be troubled
when a WAP client is not active. On the other hand, if
a web client is not active, PI cannot successfully send
out a push message to the web client. Then, the
uniform PI should take care of the successive retrials
for ensuring eventually successful delivery of push
messages.

B. Web Client

A Web Client receives push message from uniform
PIs via PAP. Since uniform PIs treat Web Clients the
same as PPG, it is required for a Web Client to
support the functionality of the PPG components that
interact with uniform PIs. A Web Client should at
least provide the following features of PAP [12]:

a. Respond to a push submission,

b. Validate the XML in control entity of the
push submission

c. Initiate a result notification message.

The above mandatory features are to satisfy the
minimum static conformance requirements specified
in PAP. Operations support for push cancellation,
status query, and client capabilities query, are
optional. Some other optional features include
multiple recipient support, delivery time constraints,

QoS, and capabilities entity support in push messages.

Most of these optional features are only meaningful
for WAP Push. Therefore, it is not necessary to
implement these features in a Web Client.

In addition to the PAP support, a web client
should have two mandatory components: Application
Dispatcher and Push User Agent. Application
Dispatcher is responsible for forwarding the push
content to the proper application according to
application identifier specified in push message
headers. Push User Agent (PUA) is the default
application receiving common push messages. The
contents pushed to PUA can be HTML or WML
documents. PUA can use appropriate browsers to
show the contents to the user. PUA may receive WAP
Service Indication (SI) or Service Loading (SL)
messages, both of which are XML documents. SI
provides a standard way to sending notifications to
end-users. SL allows PUA to load and execute a

service on the web client.

4. A Web Client Implementation

The major idea of the uniform push service is the
employment of WAP Push technology. To be
compliant with WAP Push specifications, the uniform
push framework keeps PIs, PPG, and WAP Clients
unchanged. Therefore, the key to enable a uniform
push service is how to easily provide web client
functionality in end-users’ computers. As known,
most users use desktop PCs to access the Internet. In
the following, we propose the architecture for a web
client implementation in desktop PCs running
Microsoft Windows 9x, NT, or 2000. Figure 3
illustrates the proposed architecture of a web client.

Ty
HTMLHVVMLH SI H SL I
J—
Push User Agent <:> Profiles
-/
= = —
| [|
. L . Push
Client Push Application Dispatcher Messages
Initiation || Remote —
Application| Access PAP <:> —__
Service
HTTP HTTP Server | Reposiory
- J

Figure 3. Web Client Architecture

In our implementation of a web client, the required
run-time platform is composed of only three
components: Microsoft Personal Web Server (PWS)
or Internet Information Services (IIS), MS Access
2000, and Microsoft XML Parser (MSXML) 3.0 [19].
Most modules of the web client are developed using
VBScript and Active Server Pages (ASP) [20]
technologies. A Web-based wuser interface is
developed. In the following, we will describe the
functionality of the components respectively. How
the components will be implemented is also
discussed.

A. HTTP Server/HTTP

Since PAP is on top of HTTP and the web client
should be often ready to receive push messages, we
must use a HTTP server to provide the underlying
communication service. PWS for Windows 9x or IIS
for Windows NT/2000 can be wused in our
implementation. In addition, a web client may
asynchronously notify a PI about the outcome of a
previous push. The XMLHTTP object in MSXML
3.0 can support this feature.

B. Push Access Protocol (PAP)

Since both PWS and IIS support Active Server Pages
(ASP), the PAP layer is entirely implemented in
VBScript/ASP. The format of push messages from
PIs can be multipart/related [21] or in pure XML.
The PAP layer should first divide the received HTTP
POST messages into entities. The control entity is
transformed into an XML document object. The PAP
layer will faithfully react according to the type of the
PAP element carried in the control entity. If there is a

content entity, the PAP layer will directly forward to
the Application Dispatcher. The application identifier
specified in push message headers is also sent in
company with the content entity. The capabilities
entity is not implemented at present.

C. Application Dispatcher (AD)

Application Dispatcher (AD), implemented as an
object in ASP, is responsible for forwarding push
messages to proper applications. AD queries the
application profiles stored in database to obtain the
information about how to dispatch the push content.
The information may include the execution path of
the application, or the actions to be taken.

D. Push User Agent (PUA)

Push User Agent (PUA) is the default user agent in
the client for receiving push messages. PIs can
assume that each web client has a PUA to receive the
push messages in standard formats, e.g. WML,
HTML. In addition, PUA also receive Service
Indication (SI) or Service Loading (SL) messages.
As shown in Figure 3, PUA makes use of four
modules to handle the push messages. In general, the
HTML and WML modules are web and WML
browsers [22], respectively. The necessary operations
upon reception of a SI (SL) message are performed
by the SI (SL) module. In general, a Uniform
Resource Identifier (URI), indicating the address of a
service, will be carried in a SI or SL message. SI and
SL modules may use HTTP to further retrieve the
service. The services may be kept in the service
repository in database.

Although SI and SL are designed especially for
WAP environments, their standard approach for
service management is also applicable for desktop
applications. Recently, for example, many users send
and receive e-mails via web-based E-mail systems.
The web-based mail server may use a SI to inform a
user about the arrival of new e-mails. The user can
directly retrieve the e-mails via the URI specified in
the SI.

E. Push Remote Access (PRA)

Push Remote Access (PRA) allows the end-user to
access push messages remotely through WWW.
When a push message arrives, perhaps the end-user is
not present in the front of the web client. A more
common scenario is that a number of push messages
are sent to the web client in the user’s office but the
user maybe is off duty at home. With the support of
PRA, we can use a web browser in any other
computer to remotely access push messages. The
PRA is an ASP application in our implementation. It
retrieves push messages stored in database, displays
them in the web browser, and may accept requests to
take actions upon the push messages. PRA is also the
local user interface of the web client to browse push
messages.

F. Client Initiation Application (CIA)

Client Initiation Application (CIA), adapted from the
Session Initiation Application (SIA) defined in WAP,
is developed to inform PIs that the web client is ready
to receive push messages. CIA should be performed
every time when a web client is turned on. CIA first
retrieves the information about the previous
subscribed push services from the service repository
in database, and then sends a readiness message to
each PI.

CIA is designed to overcome two possible
drawbacks in practice. Firstly, it may happen that a
web client is turned off or disabled. If a PI wants to
push a message to a web client that is now
unavailable, the PI will retry the transmission. PI may
stop the retrials after a finite number of failures.
These outstanding push messages will be buffered in
the PI. If there is no any further pull action from the
web client to the PI, the PI cannot know when the
web client will be available. As a result, the only way
to eventually achieve a successful push is continuous
retrials until the web client is available. This may
result in performance degradation in PIs and waste
network traffics. The use of CIA can significantly
improve PIs’ performance and reduce communication
overheads. Another drawback overcome by CIA is
the IP mobility issue of web clients. The IP address
of a web client may be changed dynamically due to
the use of DHCP or dialup access. To be able to
receive push messages, a web client should tell PIs its
current IP address. This can be achieved by CIA.
Currently, the communication from CIA to PI is not a
standard approach. However, the communication is
very simple. HTTP requests containing only
authentication information for subscribed push
services can offer the functionality required by CIA.

G. Database

Microsoft Access 2000 is used for the database
management of the web client. Application profiles,
push messages, and services information are the three
categories of data stored in database. The modules of
the web client access the database via Active Data
Objects (ADO) [23]. In fact, any database supporting
ODBC can be accessed by ADOs. Microsoft Access
can be replaced for serious applications.

5. Conclusions and Future Work

In this paper, we have proposed a uniform push
framework for WAP and WWW via the use of PAP
in web push services. This approach extends the
applicability of WAP PAP and utilizes the facilities
provided in WAP Push services. In the new push
framework, web clients are the key to enable uniform
push services. We have proposed a possible
architecture of a web client. A web client
implementation on PCs is developed at present.
Although PAP runs on the wired Internet, there
are a few of features designed particularly for
handling the possible problems indirectly caused by
the wireless communication in the WAP domain.

Indeed, these features are not necessary for web
clients. In the future, we will propose an
implementation profile with conformance statements
for the use of PAP in a web client. In addition, the
current push framework disallows the web clients
located in intranets to receive push messages from
the Internet. A possible solution is the placement of a
web push proxy between web clients and Pls. The
functionality of a web push proxy is to be studied.

Reference

1. “Wireless Application Protocol Architecture
Specification”, WAP Forum, 30-Apr-1998. URI:
http://www.wapforum.org/

2. WAP Forum, http://www.wapforum.org/
3. "Wireless Application Environment Overview",

WAP Forum, 29-March-2000. URL:
http://www.wapforum.org/
4. "Wireless Application Environment

Specification", WAP Forum, 19-February-2000.
URL: http://www.wapforum.org/

5. “Wireless Markup Language Specification”,

WAP Forum, 04-Nov-1999. URI:
http://www.wapforum.org/

6. "WAP Push Architectural Overview", WAP
Forum, 08-Nov-1999 URL:
http://www.wapforum.org/

. Infogate, http://www.infogate.com/
8. Tie Liao, “WebCanal White Paper”,

http://webcanal.inria.fr/white/index.html

9. Trecordi, V.; Verticale, G., “An architecture for
effective push/pull Web surfing,” Proceedings of

IEEE International Conference on
Communications, Volume: 2 , 2000, pp.1159
-1163.

10. Kinoshita, S.; Shiroshita, T.; Nagata, T., “The
realpush network: a new push-type content
delivery system using reliable multicasting,”
IEEE Transactions on Consumer Electronics,
Volume: 44 [Issue: 4, Nov. 1998, pp.
1216 —1224.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Liao, T., “Global Information Broadcast: an
architecture for Internet push channels,” IEEE
Internet Computing, Volume: 4, Issue: 4,
July-Aug. 2000, pp.16-25.

“WAP Push Access Protocol Specification”,
WAP Forum, 08-Nov-1999. URI:
http://www.wapforum.org/

"Extensible Markup Language (XML), W3C
Recommendation 10-February-1998, REC-xml-
19980210", T. Bray, et al, February 10, 1998.
URL: http://www.w3.0rg/TR/1998/REC-xml-
19980210

“WAP Push Proxy Gateway Specification”,
WAP Forum, 16-August-1999. URI:
http://www.wapforum.org/

“WAP Push OTA Specification”, WAP Forum,
08-Nov-1999. URI: http://www.wapforum.org/
“Wireless Session Protocol Specification”, WAP
Forum, Ltd., 05-Nov-1999. URI:
http://www.wapforum.org/

“WAP Service Indication Specification”, WAP
Forum, 08-Nov-1999. URI:
http://www.wapforum.org/

“WAP Service Loading Specification”, WAP
Forum, 08-Nov-1999. URI:
http://www.wapforum.org/

Microsoft, “MSDN Online XML Developer

Center,” http://www.msdn.microsoft.com/xml/
default.asp
Microsoft, “Active Server Pages Guide”,

http://www.msdn.microsoft.com/library/psdk/
iisref/aspguide.htm

E. Levinson, “The MIME Multipart/related

content type”, August 1998. URI:
http://www.ietf.org/rfc/rfc2387.txt.

MyWap.To, “MyWap F ##i 3t %,” http://
mywap.to/html/ad/ad000809/brower.htm
Microsoft, “ADO Version 2.6, http://

www.msdn.microsoft.com/library/psdk/dasdk/
ados4piv.htm

